SoE & measuring the effects of farm practices on water quality

John Threlfall

Director Environmental Information and Science

Introduction

- 1. What is good water quality?
- The science view guidelines to describe and protect water quality
- 3. Trends in surface water quality
- 4. Groundwater quality
- 5. Pomahaka catchment study
 - Agresearch effluent contamination
- 6. Manuherikia catchment study

What is good water quality?

Characteristic	Description					
Clarity	When standing in knee deep water, it should be possible to easily					
l ·	and clearly see your toes at non-event flows					
Colour	Water should be colour-free, although naturally there are some					
	tannin-stained rivers					
Algae	Algae should not cover more than 30% of bed cobbles, with					
	algae strands less than 2 cm in length at non-event flows. There					
	should be no slime on the surface of the water.					

What is good water quality?

Characteristic	Description
Sediment	Riffles and runs should be free of obvious signs of
	sediment. Walking across a riffle or run should not
	produce an obvious sediment plume.

What is good water quality?

Characteristic	Description
Smell	Water should be odourless, although water in
	wetlands may have a naturally earthy smell.
River	On the bed or bank of a river, vegetation has not
margin	been stripped bare, there is no land disturbance
(bed/bank)	resulting from land practices (including pugging) and
	there is no animal excrement.

Guidelines to protect water quality

- Which ones?
- ANZECC national comparisons
- Trip point to start investigation/action
- Local effects need to be understood and local limits set

Note - monitoring water quality doesn't always show ecological health

Guidelines

- Perception and science defensible and agreed limits
- Catchment specific guidelines
- Effects based and designed to protect good water quality into the future and improve where necessary
- Based on SoE data/ANZECC and national values

What and where

What

- 1. Nutrients (nitrogen NNN and phosphorus DRP)
- 2. Ammoniacal nitrogen (NH₄)
- 3. Bacteria (E. coli)
- 4. Turbidity

Where

- 1. Rivers & streams outside of the Lakes region
- 2. Rivers & streams in the Lakes region
- 3. Small lakes
- 4. Leachate (protecting groundwater)

Nutrient guidelines for Otago rivers

Analyte	Effects	Proposed limits
Nitrite/nitrate nitrogen (NNN)	Algal growth	Short Accrual 0.444 mg/l Long Accrual 0.075 mg/l
Dissolved reactive phosphorus (DRP)	Algal growth	Short Accrual 0.026 mg/l Long Accrual 0.006 mg/l

NH₄, E.coli, turbidity

Analyte	Effects	Proposed limits
Ammoniacal nitrogen (NH ₄)	Indicates effluent contaminatio n	0.1 mg/l
Escherichia coli (E. coli)	Contact recreation	126 cfu/ 100 ml
Turbidity (TURB)	Clarity	5 NTU

SoE median results short accrual catchments

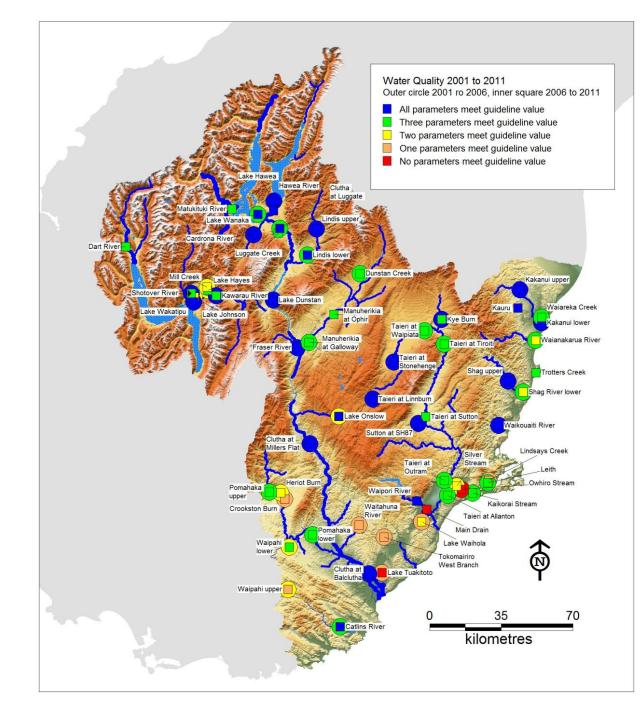
Site Name	NNN	NH4	DRP	E.coli	TURB
Proposed ORC limits	0.444	0.1	0.026	126	5
Catlins at Houipapa	0.377	0.01	0.0165	110	3.1
Kaikorai Stream at Brighton Rd	0.34	0.02	0.0135	355	3.4
Leith at Dundas Street Bridge	0.394	0.01	0.026	210	2.4
Kakanui at McCones	0.145	0.01	0.005	30	0.5
Waiareka Creek at Taipo Road	0.062	0.02	0.124	87	1.1
Kauru at Ewings	0.019	0.01	0.006	36	0.3
Kakanui at Clifton Falls Bridge	0.017	0.01	0.005	72	0.3
Pomahaka at Burkes Ford	0.4895	0.01	0.013	88	3.3
Waipahi at Waipahi	0.814	0.01	0.018	120	3.0
Waipahi at Cairns Peak	0.616	0.02	0.021	250	8.8
Heriot Burn at Park Hill Road	1.19	0.03	0.024	440	4.6
Pomahaka at Glenken	0.0385	0.01	0.009	130	2.1
Shotover at Bowens Peak	0.015	0.003	0.001	16	2.8
Waiwera at Maws Farm	0.781	0.02	0.027	210	3.6

SoE median results long accrual catchments (1)

Site Name	NNN	NH4	DRP	E.coli	TURB
ORC proposed limits	0.075	0.1	0.006	126	5
Cardrona at Mt Barker	0.055	0.009	0.005	20	1.1
Clutha at Balclutha	0.049	0.003	0.002	7	1.7
Clutha at Millers Flat	0.025	0.002	0.001	2	1.3
Fraser at Marshall Road	0.028	0.009	0.005	19	1.2
Lindis at Ardgour Road	0.072	0.009	0.005	34	1.3
Lindis at Lindis Peak	0.022	0.009	0.006	28	1.3
Luggate Creek at SH6 Bridge	0.0045	0.009	0.011	19	0.6
Manuherikia at Galloway	0.021	0.009	0.014	42	2.1
Manuherikia at Ophir	0.026	0.009	0.016	80	2.8
Dunstan Creek at Beattie Road	0.0305	0.009	0.007	16	1.0
Mill Creek at Fish Trap	0.3485	0.009	0.0065	79	3.1
Shag at Goodwood Pump	0.279	0.009	0.008	43	0.6
Shag at Craig Road	0.0215	0.009	0.006	38	0.6

SoE median results long accrual catchments (2)

Site Name	NNN	NH4	DRP	E.coli	TURB
ORC proposed limits	0.075	0.1	0.006	126	5
Silverstream at Taieri Depot	0.259	0.009	0.007	77	1.6
Taieri at Outram	0.035	0.006	0.008	71	2.2
Sutton at SH87	0.007	0.006	0.005	25	2.2
Taieri at Sutton	0.019	0.009	0.01	66	3.6
Taieri at Tiroiti	0.0205	0.004	0.0135	122	2.8
Kye Burn at SH85 Bridge	0.033	0.009	0.008	26	1.4
Taieri at Waipiata	0.0175	0.009	0.019	58	3.0
Taieri at Stonehenge (Waipiata recorder)	0.0045	0.009	0.006	33	1.5
Taieri at Linnburn (Canadian Flat recorder)	0.0045	0.009	0.0045	36	1.2
Tokomairiro at West Branch Bridge	0.1535	0.01	0.011	178	2.6
Trotters Creek at Mathesons	0.1245	0.01	0.005	43	1.6
Waianakarua at Browns	0.1485	0.009	0.007	14	0.3
Waikouaiti at Orbells Crossing	0.026	0.009	0.005	30	0.8
Waitahuna at Tweeds Bridge	0.106	0.01	0.012	138	3.7
Waipori at Waipori Falls Reserve	0.054	0.009	0.0048	6	2.5

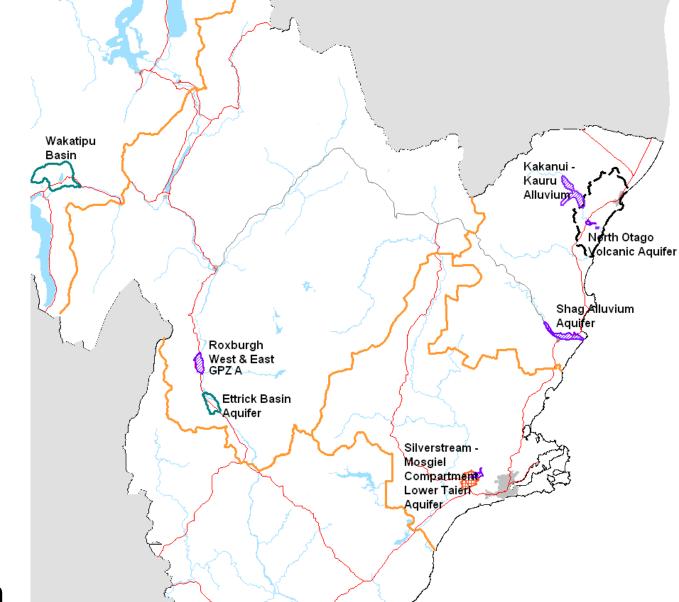

Site Name	NNN	NH4	DRP	E.coli	TURB
ORC proposed limits	0.03	0.01	0.005	10	3
Clutha at Luggate Br.	0.027	0.002	0.001	3	2.4
Dart at The Hillocks	0.018	0.009	0.0045	4	19
Kawarau at Chards	0.022	0.009	0.001	15	2.5
Lake Hawea Outflow at Dam	0.008	0.009	0.0045	1	0.4
Lake Wakatipu at Outflow	0.023	0.009	0.0045	1	0.4
Lake Wanaka at Outlet	0.027	0.009	0.0045	1	0.4
Matukituki at West Wanaka	0.047	0.009	0.0045	9	2.0

Lakes region

	Chlorophyll a	ΤN	NH4	TP	EC	TURB
ORC Proposed limits	12	0.725	0.1	0.043	126	5
Lake Tuakitoto at Outlet	7.5	0.07	0.02	0.007	130	6.5
Lake Waihola at end of jetty	5.3	0.38	0.009	0.046	30	7.8
Lake Hayes at Mid Lake - Surface	10.5	0.25	0.009	0.033	1	1.2
Lake Johnson at Surface	8.9	1	0.009	0.1	1	1.6
Lake Onslow at Boat Ramp	2.9	0.49	0.009	0.046	1	4.8

Lake sites

Trends in water quality: NH₄, NNN, DRP, E.coli

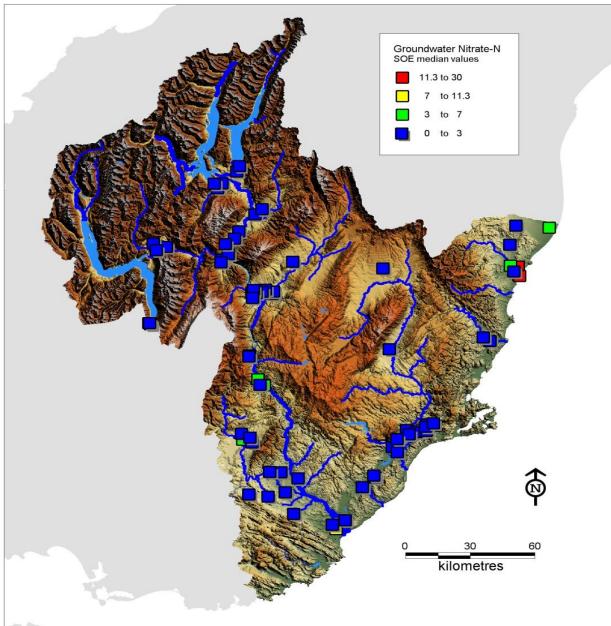

Groundwater quality: nitrates

- Indicator of non-point source pollution from landuse, especially in shallow aquifers
- It's a natural component of N cycle in soil and water –but also shows impact from septic tanks, fertilisers, intensive agriculture and organic wastewater
- Drinking water standard in NZ (MoH 2005) is 11.3 g/m³

Leachate

- water leaving the root zone heading for groundwater
- Leachate control to protect groundwater

Sensitive groundwater to nitrate nitrogen contamination


Sensitive Aquifers		Additional Aquifers			
		Median NNN			Median NNN
ORC proposed limit	10 g/m ³	g/m ³	ORC proposed limit	25 g/m ³	g/m³
Wakatipu		0.6	Kuriwao		
Roxburgh		2.6	Pomahaka		0.01
Ettrick		3.6			0.01
Silverstream-		510	Clydevale		0.05
Mosgiel		3.0	Tokomairiro		0.02
Shag Alluvium		0.8	L Waitaki		3.6
Kakanui-Kauru		N/D	Manuherikia		1.9
North Otago			Cromwell		1.8
Volcanic		11.7	Ida Valley		
			Inch Clutha		N/D
e limits					0.2
d with			Maniototo		0.05

Strath

1.4

Leachate limits compared with groundwater SoE

Pomahaka catchment

- Lower Pomahaka water quality been decreasing for number of years
- Poor draining pallic soils with tile and mole drainage
- Increased intensification
- ORC 12 month study looking at effects of land use
- Compared dairy with sheep/beef sub-catchments
- Tile discharges and surface flows were analysed
- Focus on nutrients (DRP and NNN), sediment and bacteria

Ecosystem health

Site	% Dairy	Chemical and Bacteria	Physical Habitat	MCI	Trout density/ condition
Leithen Burn	0	Excellent	Excellent	Excellent	Excellent
Black Gully (Upper)	0	Good	Excellent	Excellent	Good
Spylaw Burn	1	Fair	Good	Fair	Excellent
Flodden @ SH90	26	Good	Good	Good	Good
Crookston Burn @ Walker	44	Poor	Good	Good	Good
Heriot Burn (Upper)	12	Fair	Poor	Good	Good

Findings from the Pomahaka study

- Degraded water quality, habitat and ecological values attributed to land management
- Tiles draining dairy farms had more DRP, SS, TN and NNN
- Bacteria are a factor in all farming
- Sediment, E.coli and DRP were main concerns to river health
 - Sediment, E.coli and DRP can be controlled by good land management
- Agresearch further investigation...

Effluent application to land under bad practice

agresearch

- Used NH4, E. coli and TP to give a combined variable
- Greater than this 'combination value' indicates contamination with effluent
- Useful as performance monitoring tool
- 9% of samples from Wairuna Stream and Heriot Burn catchments found to be contaminated

Effluent application to land under bad practice

agresearch

Parameter Loads	Existing	Without contamination	% decrease
NH ₄ (g/s ⁻¹)	9	5	42
DRP (g/s ⁻¹)	4	3	17
E. <i>coli</i> (cfu/s ⁻¹)	1150376	487994	58
NNN (g/s ⁻¹)	354	344	3
SS (g/s ⁻¹)	1890	1456	23

Manuherikia catchment

- Manuherikia catchment dry catchment (long accrual time) and irrigation essential
- New efficient irrigation and Intensification likely to progress into the future
- Pressure on water quality and ecological values
- 12 month study to determine water quality, ecological health and sensitivity to change

Ecosystem health

Site	Water quality	Habitat	MCI	Trout	Native fish
Manuherikia at Loop Road	Excellent	Excellent	Poor	N/A	N/A
lda Burn upper	Excellent	Excellent	Fair	Excellent	Poor
Ida Burn lower	Fair	Good	Poor	Fair	Excellent
Pool Burn upper	Fair	Poor	Poor	Poor	Poor
Pool Burn lower	Fair	Good	Poor	Good	Excellent
Lauder Creek	Fair	Fair	Poor	Poor	Excellent
Manuherikia at Omakau	Good	Excellent	Fair	N/A	N/A
Thomsons Creek upper	Good	Excellent	Good	Excellent	Poor
Thomsons Creek lower	Poor	Good	Good	N/A	N/A
Manuherikia at Ophir	Fair	Excellent	Poor	N/A	N/A
Chatto Creek	Fair	Good	Good	N/A	N/A
Manuherikia US Chatto Creek	Good	Excellent	Fair	N/A	N/A
Manuherikia at Galloway	Good	Excellent	Poor	N/A	N/A
Dovedale at Rocks Bluff	Good	Fair	Poor	Poor	Excellent

Manuherikia study conclusions

Better riparian management

